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Chapter 4 Vehicle Dynamics

4.1. Introduction

In order to design a controller, a good representative model of the

system is needed.  A vehicle mathematical model, which is appropriate for both

acceleration and deceleration, is described in this section. This model will be

used for design of control laws and computer simulations.  Although the model

considered here is relatively simple, it retains the essential dynamics of the

system.  

4.2. System Dynamics

The model identifies the wheel speed and vehicle speed as state

variables, and it identifies the torque applied to the wheel as the input variable.

The two state variables in this model are associated with one-wheel rotational

dynamics and linear vehicle dynamics.  The state equations are the result of

the application of Newton’s law to wheel and vehicle dynamics.

4.2.1. Wheel Dynamics

The dynamic equation for the angular motion of the wheel is

& [ ]/ωw Te Tb RwFt RwFw Jw= − − − (4.1)

where Jw is the moment of inertia of the wheel, ω w  is the angular velocity of the

wheel, the overdot indicates differentiation with respect to time, and the other

quantities are defined in Table 4.1.
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Table 4.1. Wheel Parameters

Rw Radius of the wheel

Nv Normal reaction force from the ground

Te Shaft torque from the engine

Tb Brake torque

Ft Tractive force

Fw Wheel viscous friction

Rw

Nv

Te Tb

ground

Ft + Fw

Mvg

direction of vehicle motion

wheel rotating clockwise

Figure 4.1. Wheel Dynamics (under the influence of engine torque, brake

torque, tire tractive force, wheel friction force, normal reaction force from the

ground, and gravity force)

The total torque acting on the wheel divided by the moment of inertia of the

wheel equals the wheel angular acceleration (deceleration).  The total torque

consists of shaft torque from the engine, which is opposed by the brake torque

and the torque components due to the tire tractive force and the wheel viscous

friction force.  

The tire tractive (braking) force is given by

Ft Nv= µ λ( ) (4.2)

where the normal tire force (the reaction force from the ground to the tire), Nv,

depends on vehicle parameters such as the mass of the vehicle, location of the

center of gravity of the vehicle, and the steering and suspension dynamics.
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Applying a driving torque or a braking torque to a pneumatic tire produces

tractive (braking) force at the tire-ground contact patch.  The driving torque

produces compression at the tire tread in front of and within the contact patch.

Consequently, the tire travels a shorter distance than it would if it were free

rolling.  In the same way, when a braking torque is applied, it produces tension

at the tire tread within the contact patch and at the front.  Because of this

tension, the tire travels a larger distance than it would if it were free rolling.  This

phenomenon is referred as the wheel slip or deformation slip (Wong, 1978).

The adhesion coefficient, which is the ratio between the tractive (braking) force

and the normal load, depends on the road-tire conditions and the value of the

wheel slip λ  (Harnel,1969). Figure 4.2. shows a typical µ λ( )  curve.

Mathematically, wheel slip is defined as

λ ω ω ω ω= − ≠( ) / ,w v 0 (4.3)

where ωv
V

Rw
=  is the vehicle angular velocity of the wheel which is defined as

being equal to the linear vehicle velocity, V, divided by the radius of the wheel.

The variable ω  is defined as

ω ω ω= max( , )w v (4.4)

which is the maximum of the vehicle angular velocity and wheel angular

velocity.

The adhesion coefficient µ λ( )  is a function of wheel slip λ . For various

road conditions, the µ λ( )  curves have different peak values and slopes, as

shown in Figure 4.3.  In our simulation (see Chapter 5), the function

µ λ
µ λ λ

λ λ
( ) =

+

2

2 2
p p

p
 is used for a nominal curve, where µp  and λp  are the peak

values.  For various road conditions, the curves have different peak values and

slopes (see Figure 4.1. and Table 4.2.).  The adhesion coefficient slip

characteristics are also influenced by operational parameters such as speed
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and vertical load.  The peak value for the adhesion coefficient usually has

values between 0.1 (icy road) and 0.9 (dry asphalt and concrete).
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Figure 4.2. Typical µ-λ curve.
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   Figure 4.3.    µ-λ Curves for Different Road Conditions.
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Table 4.2. Average peak values for friction coefficient for different road

conditions.

Surface Average Peak

Asphalt and concrete (dry) 0.8-0.9

Asphalt (wet) 0.5-0.6

Concrete (wet) 0.8

Earth road (dry) 0.68

Earth road (wet) 0.55

Gravel 0.6

Ice 0.1

Snow (hard packed) 0.2

4.2.2. Vehicle Dynamics

The dynamic equation for the vehicle motion is

& [ ]/ .V NwFt Fv Mv= − (4.5)

where Fv = wind drag force (function of vehicle velocity), Mv = vehicle mass, Nw =

number of driving wheels (during acceleration) or the total number of wheels

(during braking), and Ft = tire tractive force, which is the average friction force of

the driving wheels for acceleration and the average friction force of all wheels

for deceleration. The linear acceleration of the vehicle is equal to the difference

between the total tractive force available at the tire-road contact and the

aerodynamic drag on the vehicle, divided by the mass of the vehicle.  The total

tractive force is equal to the product of the average friction force, Ft, and the

number of wheels, Nw.  The aerodynamic drag is a nonlinear function of the

vehicle velocity and is highly dependent on weather conditions (Kachroo 1992).

It is usually proportional to the square of the vehicle velocity.
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Traction Force

Wind Drag

Ft

Fv

Mv

Figure 4.4. Vehicle Dynamics

4.2.3. Combined System

The dynamic equation of the whole system can be written in state

variable form by defining convenient state variables.   Using equations (4.1)

and (4.5), and defining the state variables as

x
V

Rw
1 = (4.6)

x w2 =ω (4.7)

and denoting x x x= max( , )1 2 , we obtain

& ( ) ( )x f x b N1 1 1 1= − + µ λ (4.8)

& ( ) ( )x f x b N b T2 2 2 2 3= − − +µ λ (4.9)

where

T Te Tb= −

λ = −( ) /x x x2 1

f x Fv Rw x Mv Rw1 1 1( ) [ ( )]/ ( )=

b N Nv Nw Mv Rw1 = /( )

f x Fw x Jw2 2 2( ) ( ) /=

b N Rw Nv Jw2 = /

b J w3 1= / (4.10)

The combined dynamic system can be represented as shown in Figure 4.5.

The control input is the applied torque at the wheels, which is equal to the

difference between the shaft torque from the engine and the braking torque.
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During acceleration, engine torque is the primary input while during

deceleration, the braking torque is the primary input.

4.2.4. System Dynamics in Terms of Wheel Slip

Wheel slip is chosen as the controlled variable for braking control

algorithms because of its strong influence on the braking force between the tire

and the road.  By controlling the wheel slip, we control the braking force to

obtain the desired output from the system.  In order to control the wheel slip, we

can have system dynamic equations in terms of wheel slip.  During

deceleration, condition x x2 1≤ , ( )x1 0≠  is satisfied, and therefore wheel slip

is defined as:

λ = −( ) /x x x2 1 1 (4.11)

Differentiating this equation, we obtain

 & [ & ( ) & ]/λ λ= − +x x x2 1 1 1 (4.12)

Substituting equations (4.8) (4.9) and (4.11) into equation (4.12), we obtain

& [( ) ( ) ( )] [ ( ) ] ]/λ λ λ µ= + − − + + +1 1 1 2 2 2 1 1 3 1f x f x b N b N b T x         (4.13)

This gives the wheel slip dynamic equation for deceleration.  This equation is

nonlinear and involves uncertainties in its parameters.  The nonlinear

characteristics of the equation are due to the following:

     - the relationship of wheel slip with velocity is nonlinear,

     - the µ-λ relationship is nonlinear,

     - there are multiplicative terms in the equation,

     - functions f x1 1( )  and f x
2 2( )  are nonlinear.

The uncertainties of the parameters are due to the following:

     -    Nv (normal tire force) changes based on steering and suspension 

dynamics,

     - the µ-λ curve changes based on road surface,



38

     - moment of inertia of the wheel is changing all the time,

     - wind drag force changes based on uncertain wind speed and direction.

Te Fw(ω)
  + Wheel Dynamics

Tb             +    - 1/Jw 1/s wheel speed
(ω)

  -      -

NvRw Fv(V)

     - vehicle
speed(V)

NwNv 1/Mv 1/s

+
Vehicle Dynamics

λ -
µ(λ) 1/x 1/Rw

+
x=max(ω, V/Rw)

Road/Tire Interaction

Figure 4.5  Vehicle/road/tire one-wheel model

4.2.5. Stability of the Dynamic System

Before we design a control mechanism for the combined system, we want

to assure the stability of the system.  Due to the nonlinearity of the system,

local stability could be evaluated.

The local stability of a nonlinear system can be studied by linearizing the

system around its equilibrium point.  For general differential equations in the

form of
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 &( ) ( ( ), ( ))x t f x t u t= (4.14)

where x(t) is the state vector, u(t) is the input vector, and f: R
n

R
m

R
n

× → .  The

pair (x0, u0) is called an equilibrium if f(x0, u0) = 0 .  Starting from the initial

condition x(0) = x0 with a constant input u(t)= u0, the solution remains at x(t)= x0.  

Assuming that f is continuously differentiable at (x0, u0), a multivariable

Taylor

series expansion yields
&( ) ( , )( ( ) )x t f f x u x t x= −(x0, u0) +D1 0 0 0

+D f2 (x0, u0) (u(t) -u0 ) +r x t u t( ( ), ( ))  (4.15)

where the remainder, r(x,u), satisfies

lim
( , ) ( , )

( , )

x u x u

r x u

x x u u
→

− + −
=

0 0
0

2
0

2
0 (4.16)

By defining the deviation-from-equilibrium terms
~( ) ( )x t x t x= − 0 , ~( ) ( )u t u t u= − 0  (4.17)

and assuming that the equilibrium is fixed, along with the equilibrium condition

f(x0, u0) = 0, the following equation represents the linearization of the nonlinear

dynamics about the equilibrium point (x0, u0):
~& ( , )~( ) ( , )~( )x D f x u x t D f x u u t≅ +1 0 0 2 0 0   (4.18)

where D f1 and D f2  denote the Jacobian matrices with respect to the first

variable (x) and the second variable (u).

The linearization of a nonlinear system can be used to analyze stability.

Let x0 be an equilibrium for the unforced state equations (u(t)=0)
&( ) ( ( ), )x t f x t= 0 (4.19)

That means f(x0) =0.  The equilibrium x0 is stable if for each ε > 0 , there exists a
δ ε( ) > 0  such that

x x x t x t( ) ( ) ( ) ,0 0 0 0− < ⇒ − < ∀ ≥δ ε ε (4.20)

and it is asympototically stable if it is stable and for some δ 1

x x x t x( ) ( ) ,0 0 1 0 0− < ⇒ − →δ  as t → ∞

(4.21)
Let f :  Rn Rn→  be continuously differentiable.  The equalibrium x0 is
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asymptotically stable if all of the eigenvalues of Df x( )0  have strictly negative

real parts.  It is unstable if Df x( )0  has an eigenvalue with a positive real part.

As a result, linearization can provide sufficient conditions for stability of the

nonlinear system in a sufficiently small neighborhood of an equilibrium and
only if the system is time-invariant.  Only in the case that Df x( )0 has purely

imaginary eigenvalues, then nonlinear methods have to be used to evaluate

the stability of the nonlinear system.

The vehicle nonlinear system equations are linearized around the

equilibrium point in order to study the system stability.  The equilibrium point
(x10 ,x20) of the vehicle system described by Equations (4.8) and (4.9) can be

obtained by equating the right hand sides of the two equations to zero.  Then

the Jacobian matrix can be evaluated to assess the stability of the system.

For the deceleration case, the Jacobian matrix at the equilibrium is:

A = 

- df1
dx1

(x10) -b1N
∂µ

∂λ
(x10 ,x20)x20

x10
2

,                 b1N
∂µ

∂λ
(x10 ,x20) 1

x10

b2N
∂µ

∂λ
(x10 ,x20)x20

x10
2

,                 - df2
dx2

(x20)-b2N
∂µ

∂λ
(x10 ,x20) 1

x10

(4.22)

The eigenvalues of A are obtained by solving for λe in the equation

det(λeI-A)=0

The real part of the eigenvalues of A are calculated to be

-  df1
dx1

(x10)+df2
dx2

(x20)+
∂µ

∂λ
(x10 ,x20)[b1N

x20

x10
2

+b2N
1

x10
]

2

Here also df1/dx1, df2/dx2, x1, x2, b1N and b2N are all positive (see equations

in (4.10)), so when ∂µ/∂λ is positive, the eigenvalues of A have negative real

parts.  When ∂µ/∂λ is negative, the eigenvalues of A have positive real parts for
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b1N x20

x10
2

+ b2N/x10   > 

df1
dx1

(x10) +  df2
dx2

(x20)

∂µ

∂λ

(4.23)

Therefore, only under condition (4.23) the system is unstable.

4.3. Summary

In this section, the dynamics of the combined system of wheel and

vehicle are described.  The condition to assure the system stability is also

described.  The vehicle model described by (4.8), (4.9) and (4.10) will be used

to represent the plant in simulation and control system design for the rest of the

thesis.  


